Versatile, high-speed force transducer using a laser diode beam as an optical lever.
نویسندگان
چکیده
A force transducer with variable sensitivity and speed is described. Its moving element is a cantilever beam that projects vertically into a muscle bath. A brace constrains bending of the beam to a short, proximal "hinge." Rotation of the beam about the hinge is amplified 30-fold by an optical lever consisting of a laser diode beam reflected from a mirror on the cantilever to a photodiode pair. This design places the electrical components at a distance from the damp environment of the muscle bath. Large changes in sensitivity and speed can be obtained by substituting different cantilevers. Smaller changes can be made by varying the length of the hinge. A transducer with a 6-mm cantilever optimized for the study of single, skinned skeletal muscle fibers is described in detail. This device had a resonant frequency of 22 kHz and sensitivity such that the total root-mean-square noise in the circuit was more than 500-fold smaller than the expected maximum force. Variations of this device with orders of magnitude different sensitivities are also described.
منابع مشابه
Unified Pulsed Laser Range Finder and Velocimeter using Ultra-Fast Time-To-Digital Converter
In this paper, we present a high accuracy laser range finder and velocimeter using ultra-fast time-to-digital converter (TDC). The system operation is based on the measuring the round-trip time of a narrow laser pulse. A low-dark current high-speed PIN photodiode is used to detect the triggered laser beam and to produce start signal. The pulsed laser diode generates 45W optical power at 30ns du...
متن کاملUsing of Broadened Asymmetric Waveguide Structure for 980nm Diode Laser
Laser diode beam divergence is the main parameter for beam shaping and fiber optic coupling. Increasing the waveguide layer thickness is the conventional method to decrease the beam divergence. In this paper, the broadened asymmetric waveguide is introduced to decrease the divergence without increasing the optical power. The asymmetric waveguide was used to shift the vertical optical field to n...
متن کاملMultiplying optical tweezers force using a micro-lever.
This study presents a photo-driven micro-lever fabricated to multiply optical forces using the two-photon polymerization 3D-microfabrication technique. The micro-lever is a second class lever comprising an optical trapping sphere, a beam, and a pivot. A micro-spring is placed between the short and long arms to characterize the induced force. This design enables precise manipulation of the micro...
متن کاملBiomechanical properties of soft tissue measurement using Optical Coherence Elastography
Optical Coherence Tomography (OCT) provides images at near histological resolution, which allows for the identification of micron sized morphological tissue structures. Optical coherence elastography (OCE) measures tissue displacement and utilizes the high resolution of OCT to generate high-resolution stiffness maps. In this work, we explored the potential of measuring shear wave propagation us...
متن کاملDesign and Application of a Photoacoustic Sensor for Monitoring the Laser Generated Stress Waves in Optical Fiber
Measurement of stress transients generated by a 400ns pulsed HF laser in an infrared fluoride glass fiber has been made using fast time – response piezoelectric film transducer. Acoustic signals up to 12 mV with frequencies ranging in megahertz generated by 21 mJ laser pulse when passed through the fiber axis in the linear region. It is shown that useful information such as onset of non - linea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 88 1 شماره
صفحات -
تاریخ انتشار 2000